Identification of Sox17 as a transcription factor that regulates oligodendrocyte development.

نویسندگان

  • Jiho Sohn
  • JoAnne Natale
  • Li-Jin Chew
  • Shibeshih Belachew
  • Ying Cheng
  • Adan Aguirre
  • Judith Lytle
  • Brahim Nait-Oumesmar
  • Christophe Kerninon
  • Masami Kanai-Azuma
  • Yoshiakira Kanai
  • Vittorio Gallo
چکیده

Microarray analysis of oligodendrocyte lineage cells purified by fluorescence-activated cell sorting (FACS) from 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP)-enhanced green fluorescent protein (EGFP) transgenic mice revealed Sox17 (SRY-box containing gene 17) gene expression to be coordinately regulated with that of four myelin genes during postnatal development. In CNP-EGFP-positive (CNP-EGFP+) cells, Sox17 mRNA and protein levels transiently increased between postnatal days 2 and 15, with white matter O4+ preoligodendrocytes expressing greater Sox17 levels than Nkx2.2+ (NK2 transcription factor related, locus 2) NG2+, or GalC+ (galactocerebroside) cells. In spinal cord, Sox17 protein expression was undetectable in the primary motor neuron domain between embryonic days 12.5 and 15.5 but was evident in Nkx2.2+ and CC1+ cells. In cultured oligodendrocyte progenitor cells (OPCs), Sox17 levels were maximal in O4+ cells and peaked during the phenotypic conversion from bipolar to multipolar. Parallel increases in Sox17 and p27 occurred before MBP protein expression, and Sox17 upregulation was prevented by conditions inhibiting differentiation. Sox17 downregulation with small interfering RNAs increased OPC proliferation and decreased lineage progression after mitogen withdrawal, whereas Sox17 overexpression in the presence of mitogen had opposite effects. Sox17 overexpression enhanced myelin gene expression in OPCs and directly stimulated MBP gene promoter activity. These findings support important roles for Sox17 in controlling both oligodendrocyte progenitor cell cycle exit and differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transgenic overexpression of Sox17 promotes oligodendrocyte development and attenuates demyelination.

We have previously demonstrated that Sox17 regulates cell cycle exit and differentiation in oligodendrocyte progenitor cells. Here we investigated its function in white matter (WM) development and adult injury with a newly generated transgenic mouse overexpressing Sox17 in the oligodendrocyte lineage under the CNPase promoter. Sox17 overexpression in CNP-Sox17 mice sequentially promoted postnat...

متن کامل

SRY-box containing gene 17 regulates the Wnt/β-catenin signaling pathway in oligodendrocyte progenitor cells.

The SRY-box (Sox) transcription factors regulate oligodendrocyte differentiation, but their signaling targets are largely unknown. We have identified a major signal transduction pathway regulated by Sox containing gene 17 (Sox17) in the oligodendrocyte lineage. Microarray analysis in oligodendrocyte progenitor cells (OPCs) after Sox17 attenuation revealed upregulated genes associated with cell ...

متن کامل

The enhancing effect of electromagnetic field on the expression of Oligodendrocyte transcription factor 1 and 2 (Olig1/2) in the mice cerebral cortex

Olig1 and Olig2, two transcription factors, play regulatory function in the differentiation and specification of oligodendrocyte progenitor cells (OPCs). In this study the effects of electromagnetic fields (EMF) on total protein concentration ( TPC ) and Olig1 and Olig2 expression in the cerebral cortex of mouse was examined. Twenty-one Balb/c mice were separated into three groups: control, EMF...

متن کامل

Sox17 regulates organ lineage segregation of ventral foregut progenitor cells.

The ventral pancreas, biliary system, and liver arise from the posterior ventral foregut, but the cell-intrinsic pathway by which these organ lineages are separated is not known. Here we show that the extrahepatobiliary system shares a common origin with the ventral pancreas and not the liver, as previously thought. These pancreatobiliary progenitor cells coexpress the transcription factors PDX...

متن کامل

Pancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro

The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 38  شماره 

صفحات  -

تاریخ انتشار 2006